Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add filters








Language
Year range
1.
Biol. Res ; 44(1): 63-67, 2011. ilus
Article in English | LILACS | ID: lil-591865

ABSTRACT

Proliferation and cell fate determination in the developing embryo are extrinsically regulated by multiple interactions among diverse secreted factors, such as Sonic Hedgehog (SHh), which act in a concentration-dependent manner. The fact that SHh is secreted as a lipid-modified protein suggests the existence of a mechanism to regulate its movement across embryonic fields. We have previously shown that heparan sulfate proteoglycans (HSPGs) are required for SHh binding and signalling. However, it was not determined which specific HSPG was responsible for these functions. Here we evaluated the contribution of perlecan on SHh localization and activity. To understand the mechanism of action of perlecan at the cellular level, we studied the role of perlecan-SHh interaction in SHh activity using both cell culture and biochemical assays. Our findings show that perlecan is a crucial anchor and modulator of SHh activity acting as an extracellular positive regulator of SHh.


Subject(s)
Animals , Humans , Mice , Rats , Brain/drug effects , Heparan Sulfate Proteoglycans/pharmacology , Signal Transduction/drug effects , Brain/metabolism , Chromatography, Gel , Fibroblasts/drug effects , Fibroblasts/metabolism , Gene Expression Regulation, Developmental , Hedgehog Proteins/metabolism , Heparan Sulfate Proteoglycans/isolation & purification , Heparan Sulfate Proteoglycans/metabolism , Heparan Sulfate Proteoglycans/physiology , Immunohistochemistry
2.
An. acad. bras. ciênc ; 81(3): 409-429, Sept. 2009. ilus, tab
Article in English | LILACS | ID: lil-523987

ABSTRACT

Heparan sulfate proteoglycans are ubiquitously found at the cell surface and extracellular matrix in all the animal species. This review will focus on the structural characteristics of the heparan sulfate proteoglycans related to protein interactions leading to cell signaling. The heparan sulfate chains due to their vast structural diversity are able to bind and interact with a wide variety of proteins, such as growth factors, chemokines, morphogens, extracellular matrix components, enzymes, among others. There is a specificity directing the interactions of heparan sulfates and target proteins, regarding both the fine structure of the polysaccharide chain as well precise protein motifs. Heparan sulfates play a role in cellular signaling either as receptor or co-receptor for different ligands, and the activation of downstream pathways is related to phosphorylation of different cytosolic proteins either directly or involving cytoskeleton interactions leading to gene regulation. The role of the heparan sulfate proteoglycans in cellular signaling and endocytic uptake pathways is also discussed.


Proteoglicanos de heparam sulfato são encontrados tanto superfície celular quanto na matriz extracelular em todas as espécies animais. Esta revisão tem enfoque nas características estruturais dos proteoglicanos de heparam sulfato e nas interações destes proteoglicanos com proteínas que levam à sinalização celular. As cadeias de heparam sulfato, devido a sua variedade estrutural, são capazes de se ligar e interagir com ampla gama de proteínas, como fatores de crescimento, quimiocinas, morfógenos, componentes da matriz extracelular, enzimas, entreoutros. Existe uma especificidade estrutural que direciona as interações dos heparam sulfatos e proteínas alvo. Esta especificidade está relacionada com a estrutura da cadeia do polissacarídeo e os motivos conservados da cadeia polipeptídica das proteínas envolvidas nesta interação. Os heparam sulfatos possuem papel na sinalização celular como receptores ou coreceptores para diferentes ligantes. Esta ligação dispara vias de sinalização celular levam à fosforilação de diversas proteínas citosólicas ou com ou sem interações diretas com o citoesqueleto, culminando na regulação gênica. O papel dos proteoglicanos de heparam sulfato na sinalização celular e vias de captação endocítica também são discutidas nesta revisão.


Subject(s)
Humans , Endocytosis/physiology , Extracellular Matrix Proteins/physiology , Heparan Sulfate Proteoglycans/physiology , Signal Transduction/physiology , Cell Adhesion/physiology , Heparan Sulfate Proteoglycans/chemistry , Protein Binding/physiology
3.
Braz. j. med. biol. res ; 39(2): 157-167, Feb. 2006. tab
Article in English | LILACS | ID: lil-420266

ABSTRACT

The syndecans, heparan sulfate proteoglycans, are abundant molecules associated with the cell surface and extracellular matrix and consist of a protein core to which heparan sulfate chains are covalently attached. Each of the syndecan core proteins has a short cytoplasmic domain that binds cytosolic regulatory factors. The syndecans also contain highly conserved transmembrane domains and extracellular domains for which important activities are becoming known. These protein domains locate the syndecan on cell surface sites during development and tumor formation where they interact with other receptors to regulate signaling and cytoskeletal organization. The functions of cell surface heparan sulfate proteoglycan have been centered on the role of heparan sulfate chains, located on the outer side of the cell surface, in the binding of a wide array of ligands, including extracellular matrix proteins and soluble growth factors. More recently, the core proteins of the syndecan family transmembrane proteoglycans have also been shown to be involved in cell signaling through interaction with integrins and tyrosine kinase receptors.


Subject(s)
Animals , Humans , Cell Adhesion/physiology , Heparan Sulfate Proteoglycans/physiology , Membrane Glycoproteins/physiology , Proteoglycans/physiology , Signal Transduction/physiology , Extracellular Matrix Proteins/physiology , Heparan Sulfate Proteoglycans/chemistry , Membrane Glycoproteins/chemistry , Protein Binding/physiology , Proteoglycans/chemistry , Receptors, Cell Surface/physiology , Syndecans
4.
Braz. j. med. biol. res ; 34(8): 971-975, Aug. 2001. ilus
Article in English | LILACS | ID: lil-290144

ABSTRACT

We have examined the role of cell surface glycosaminoglycans in cell division: adhesion and proliferation of Chinese hamster ovary (CHO) cells. We used both wild-type (CHO-K1) cells and a mutant (CHO-745) which is deficient in the synthesis of proteoglycans due to lack of activity of xylosyl transferase. Using different amounts of wild-type and mutant cells, little adhesion was observed in the presence of laminin and type I collagen. However, when fibronectin or vitronectin was used as substrate, there was an enhancement in the adhesion of wild-type and mutant cells. Only CHO-K1 cells showed a time-dependent adhesion on type IV collagen. These results suggest that the two cell lines present different adhesive profiles. Several lines of experimental evidence suggest that heparan sulfate proteoglycans play a role in cell adhesion as positive modulators of cell proliferation and as key participants in the process of cell division. Proliferation and cell cycle assays clearly demonstrate that a decrease in the amount of glycosaminoglycans does not inhibit the proliferation of mutant CHO-745 cells when compared to the wild type CHO-K1, in agreement with the findings that both CHO-K1 and CHO-745 cells take 8 h to enter the S phase


Subject(s)
Animals , Cricetinae , CHO Cells/cytology , Extracellular Matrix/physiology , Heparan Sulfate Proteoglycans/physiology , Cell Adhesion/physiology , Cell Division , Collagen/physiology , Fibronectins/physiology , Laminin/physiology , Vitronectin/physiology
5.
Braz. j. med. biol. res ; 32(5): 539-44, May 1999.
Article in English | LILACS | ID: lil-233472

ABSTRACT

Heparan sulfate is a component of vertebrate and invertebrate tissues which appears during the cytodifferentiation stage of embryonic development. Its structure varies according to the tissue and species of origin and is modified during neoplastic transformation. Several lines of experimental evidence suggest that heparan sulfate plays a role in cellular recognition, cellular adhesion and growth control. Heparan sulfate can participate in the process of cell division in two distinct ways, either as a positive or negative modulator of cellular proliferation, or as a response to a mitogenic stimulus


Subject(s)
Animals , Cell Division , Heparitin Sulfate , Cell Cycle , Growth Substances , Heparan Sulfate Proteoglycans/biosynthesis , Heparan Sulfate Proteoglycans/physiology , Heparitin Sulfate/biosynthesis , Heparitin Sulfate/physiology , Protein Kinase C/metabolism , Receptors, Fibroblast Growth Factor
SELECTION OF CITATIONS
SEARCH DETAIL